New Hampshire Volunteer Lake Assessment Program # 2002 Interim Report for Lake Winona New Hampton NHDES Water Division Watershed Management Bureau 6 Hazen Drive Concord, NH 03301 # OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **LAKE WINONA** the program coordinators recommend the following actions. We would like to encourage your monitoring group to conduct more sampling events in the future. Typically we recommend that each monitoring group sample at least three times per summer (once in June, July, and August). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability and your associations' water monitoring goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative lake quality trends. Since weather patterns and activity in the watershed can change throughout the summer, and from year to year (and even from hour to hour during a rain event), it is a good idea to sample more than once or twice over the course of the season. If you are having difficulty finding volunteers to help sample, or to pick-up or drop-off equipment at one of the labs, please give the VLAP Coordinator a call and we will try to help you work out an arrangement. #### FIGURE INTERPRETATION Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program. Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a and are naturally found in lake ecosystems, the chlorophyll-a concentration found in the water gives an estimation of the concentration of algae or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 ug/L. Similar to the summer of 2001, the summer of 2002 was filled with many warm and sunny days and there was a lower than normal amount of rainfall during the latter-half of the summer. The combination of these factors resulted in relatively warm surface waters throughout the state. The lack of fresh water to the lakes/ponds reduced the rate of flushing which may have resulted in water stagnation. Due to these conditions, many lakes and ponds experienced increased algae growth, including filamentous green algae (the billowy clouds of green algae typically seen floating near shore), and some lakes/ponds experienced nuisance cyanobacteria (blue-green algae) blooms. The current year data (the upper graph) show that the chlorophyll-a concentration in August was **much less than** the state mean. Overall, visual inspection of the historical data trend line (the bottom graph) shows **a variable**, **but decreasing**, in-lake chlorophyll-a trend. Specifically, this means that the chlorophyll concentration has **fluctuated**, **but has decreased overall**, since monitoring began in 1986. In the 2003 Bi-Annual Report, since the lake/pond will have been sampled for at least 10 consecutive years, we will conduct a statistical analysis of the data. This will allow us to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began. While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Therefore, algal concentrations may increase when there is an increase in nonpoint sources of nutrient loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). It is important to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality. Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 3 lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program. Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters. Two different weather related patterns occurred this past spring and summer that influenced lake quality during the summer season. In late May and early June of 2002, numerous rainstorms occurred. Stormwater runoff associated with these rainstorms may have increased phosphorus loading, and the amount of soil particles washed into waterbodies throughout the state. Some lakes and ponds experienced lower than typical transparency readings during late May and early June. However, similar to the 2001 sampling season, the lower than average amount of rainfall and the warmer temperatures during the latter-half of the summer resulted in a few lakes/ponds reporting their best-ever Secchi-disk readings in July and August (a time when we often observe reduced clarity due to increased algal growth)! The current year data (the upper graph) show that the transparency in August was *much greater than* the state mean. Overall, visual inspection of the historical data trend line (the bottom graph) shows a variable, but overall decreasing (meaning worsening) trend for in-lake transparency, since monitoring began. As discussed previously, for the 2003 Bi-Annual report, we will conduct a statistical analysis of the data to objectively determine lake quality trends. Typically, high intensity rainfall causes erosion of sediments into the lake/pond and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants are available from NHDES upon request. Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program. Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is ### 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The historical data for the epilimnion (the top inset graph) show that the total phosphorus concentration in August was *much less than* the state median. The historical data for the hypolimnion (the lower inset graph) show that the total phosphorus concentration in August was **slightly less than** the state median. Overall, visual inspection of the historical data trend line for the epilimnion (the upper graph) and the hypolimnion (the lower graph) shows **a variable** total phosphorus trend, which means that the concentration has **fluctuated** in the epilimnion since monitoring began in 1987. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. If you would like to educate watershed residents about how they can help to reduce phosphorus loading into the lake/pond, please contact the VLAP Coordinator. #### TABLE INTERPRETATION #### > Table 2: Phytoplankton Phytoplankton populations undergo a natural succession during the growing season (Please refer to page 12 of the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. An overabundance of cyanobacteria (previously referred to as bluegreen algae) indicates that there may be an excessive total phosphorus concentration in the lake/pond, or that the ecology is out of balance. #### > Table 2: Cyanobacteria Small amounts of the cyanobacterium **Anabaena** and **Microcystis** were observed in the plankton sample this season. **If present in large amounts, these species can be toxic to livestock, wildlife, pets, and humans** (Refer to page 14 of the "Biological Monitoring Parameters" section of this report for a more detailed explanation). Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. As with the summer of 2001, we observed that some lakes and ponds had cyanobacteria present during the 2002 summer season, likely due to the many warm and sunny days that occurred this summer, which may have accelerated algal and bacterial growth. In addition, the lower than normal amount of rainfall during the latter half of the summer, meant that the slow flushing rates resulted in less phosphorus exiting the lake outlet and more phosphorus being available for plankton growth. The presence of cyanobacteria serves as a reminder of the lake's/pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the lake/pond by eliminating fertilizer use on lawns, keeping the lake/pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads. In addition, residents should also observe the lake/pond in September and October during the time of fall turnover (lake mixing) to document any blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into "surface scums" that accumulate in one section of the lake/pond. If a fall bloom occurs, please contact the VLAP Coordinator. #### > Table 4: pH Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is 6.5, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report. Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake/pond pH. #### > Table 5: Acid Neutralizing Capacity Table 5 in Appendix B presents the current year and historic epilimnetic ANC for each year the lake/pond has been monitored through VLAP. Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report. #### > Table 6: Conductivity Table 6 in Appendix B presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report. The conductivity has *increased* in the lake/pond and inlets since monitoring began (Table 6). Typically, sources of increased conductivity are due to human activity. These activities include septic systems that fail and leak leachate into the groundwater (and eventually into the tributaries and the lake/pond), agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron deposits in bedrock, can influence conductivity. It is possible that the lower than normal amount rainfall during the latter-half of the summer reduced tributary and lake flushing, which allowed pollutants and ions to build up and resulted in elevated conductivity levels. We recommend that your monitoring group conduct stream surveys and stormwater sampling along the inlets with elevated conductivity (in particular, **Hawkins Pond Inlet** and **North Inlet**) so that we can determine what may be causing the increases. For a detailed explanation on how to conduct a stream survey and stormwater sampling, please refer to this year's "Special Topic Article" which is included in Appendix D of this report. #### > Table 8: Total Phosphorus Table 8 in Appendix B presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to page 17 of the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The **North Inlet** station has had a history of **elevated** and **fluctuating** total phosphorus concentrations. We recommend that your monitoring group conduct stream surveys and stormwater sampling along this inlet so that we can determine what may be causing the increases. For a detailed explanation on how to conduct a stream survey and stormwater sampling, please refer to this year's "Special Topic Article" which is included in Appendix D of this report. #### > Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) for the 2002 sampling season. Table 10 shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was greater than 100% saturation at 5.0 - 7.0 meters at the deep spot on the August sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also raise the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth of the photic zone (depth to which sunlight can penetrate into the water column) was approximately 6.25 meters on this date (as shown by the Secchi-disk transparency), and that the metalimnion (the layer of rapid decrease in water temperature and increase in density – a place where algae are often found) was located between approximately 5 and 8 meters, we suspect that an abundance of algae caused the oxygen super saturation. The dissolved oxygen concentration was *low in the hypolimnion* at the deep spot of the lake/pond. As stratified lakes/ponds age, oxygen becomes *depleted* in the hypolimnion (the lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it was this season and in many past seasons), the phosphorus that is normally bound up in the sediment may be re-released into the water column. The **low** oxygen level in the hypolimnion is a sign of the lake's/pond's **aging** and **declining** health. This year the DES biologist conducted the temperature/dissolved oxygen profile in **August**. We recommend that the annual biologist visit for the 2003 sampling season be scheduled during **June** so that we can determine if oxygen is being depleted in the hypolimnion **earlier** in the sampling season. #### > Table 11: Turbidity Table 11 in Appendix B lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to page 19 of the "Other Monitoring Parameters" section of this report for a more detailed explanation. #### > Table 12: Bacteria (E.coli) Table 12 lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestines in humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured, and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful pathogens may also be present. The *E.coli* concentration was **low** in the **Heights Brook Cove**, **North Inlet Upstream**, and **North Inlet** samples on the **August 5**th sampling event. The concentration in the **Hawkins Pond Inlet** sample was **elevated** (110 counts per 100 ml of sample), but **did not exceed** the state standard of 406 counts per 100 mL designated for Class B waters. If you are concerned about *E. coli* levels in the lake, you may want to repeat this test on a weekend during heavy beach use or after a storm event. Since bacteria die quickly in cool pond waters, testing is most accurate and most representative of the health risk to bathers when the source (humans, animals, or waterfowl) is present. For a detailed explanation on how to conduct stormwater sampling, please refer to this year's "Special Topic Article" which is included in Appendix D of this report. #### **NOTES** ➤ **Biologist's Note (8/5/02):** Low flow at Hawkins Pond Inlet and Outlet. Four plant samples were taken from the pond and submitted for identification. These plants were identified as native species of elodea, bladderwort, moss, and pondweed. #### **USEFUL RESOURCES** Changes to the Comprehensive Shoreland Protection Act: 2001 Legislative Session, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/sp/sp-8.htm Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm The Lake Pocket Book. Prepared by The Terrene Institute, 2000. (internet: www.terrene.org, phone 800-726-4853) Managing Lakes and Reservoirs, Third Edition, 2001. Prepared by the North American Lake Management Society (NALMS) and the Terrene Institute in cooperation with the U.S. Environmental Protection Agency. Copies are available from NALMS (internet: www.nalms.org, phone 608-233-2836), and the Terrene Institute (internet: www.terrene.org, phone 800-726-4853) Organizing Lake Users: A Practical Guide. Written by Gretchen Flock, Judith Taggart, and Harvey Olem. Copies are available form the Terrene Institute (internet: www.terrene.org, phone 800-726-4853) Proper Lawn Care in the Protected Shoreland: The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-15.htm Swimmers Itch, WD-BB-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-2.htm Use of Lakes or Streams for Domestic Water Supply, WD-WSEB-1-11, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/ws/ws-1-11.htm Water Milfoil, WD-BB-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-1.htm Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-BB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-4.htm # Appendix A: Graphs ## Lake Winona, New Hampton Figure 1. Monthly and Historical Chlorophyll-a Results # Lake Winona, New Hampton ### Lake Winona, New Hampton